
Graph-Based Modeling of osu! Beatmaps for
Estimating Gameplay Difficulty

Emilio Justin – 13524043
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: emilio.justin54@gmail.com, 13524043@std.stei.itb.ac.id

Abstract— osu! is a free-to-play rhythm game where
beatmaps are designed as sequences of interactive hit objects
synchronized to music. While the game provides a star
rating system to indicate a beatmap difficulty, the underlying
calculation is not easily interpretable. This paper presents
an alternative approach to estimate a beatmap difficulty
by modeling osu! beatmaps as directed weighted graphs,
where each node represents a hit object and edges represents
transitions based on spatial and temporal relationships. A
method is developed for parsing beatmap files, constructing
the corresponding graph, and evaluating the resulting
model using a custom edge-weighting formula that reflects
movement difficulty. This graph-based representation offers
an interpretable framework to estimate its difficulty.

Keywords — osu!, Graph, Beatmap Modeling, Difficulty
Estimation

I. INTRODUCTION

Osu! is a free-to-play rhythm game in which hit objects
appear in sync with the music, and players are required
to click, slide, or spin these objects at the right time and
in the correct sequence. Each beatmap in osu! represents
a unique pattern of these hit objects, carefully designed to
match the tempo and structure of the accompanying song.
The gameplay emphasizes not only timing precision, but also
spatial awareness and quick decision-making, making it both
mechanically demanding and cognitively engaging.

The difficulty of an osu! beatmap is influenced by multiple
factors, including the density of hit objects, their spatial
distribution, the approach rate of the hit objects, and the
complexity of movement patterns between them. While osu!
provides a star rating system to represent the overall dif-
ficulty of a beatmap, the underlying calculation involves a
combination of heuristics and simulation-based estimations
that are not easily accessible or interpretable.

This paper presents an alternative approach to estimate
a beatmap difficulty using graph theory as a modeling
framework. By parsing an osu! beatmap file and constructing
a weighted directed graph where nodes represent hit objects
and edges capture spatial and temporal relationships between
them, with each edge is weighted using a custom formula that
reflects the difficulty of transitioning between two objects.

This graph-based representation is intended to provide a
more structured, transparent, and interpretable method for
estimating gameplay difficulty in osu! beatmaps.

II. THEORETICAL FRAMEWORK

A. Graph

In mathematics, a graph is a fundamental structure used to
model relations between discrete objects. A graph consists
of two primary components, a set of vertices (also called
nodes) and a set of edges that connect pairs of vertices.

1) Definition
Formally, a graph can be defined as an ordered pair
G = (V,E), where:
• V is a non-empty set of vertices, such that V =
{v1,v2, ...,vn}

• E is a set of edges, where each edge represents
a connection between two vertices, such that E =
{e1,e2, ...,en}

Fig. 1: Simple Graph
source: https://informatika.stei.itb.ac.id/ rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

2) Types of Graphs
Graphs can be classified into several types based on
their connections and the presence of weights on their
edges. In an undirected graph, the edges have no direc-
tion, meaning that the connection between nodes is mu-
tual. In contrast, a directed graph includes edges with a
defined orientation, representing one-way relationships
from one node to another. Additionally, graphs can be
categorized by whether or not their edges carry weights.

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

mailto:emilio.justin54@gmail.com
mailto:13524043@std.stei.itb.ac.id
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf


An unweighted graph treats all edges equally without
assigning any specific cost or value to them. Meanwhile,
a weighted graph associates each edge with a numerical
value, such as cost or distance.

Fig. 2: Undirected and Directed Graph
source: https://informatika.stei.itb.ac.id/ rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

Fig. 3: Unweighted and Weighted Graph
source: https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf

There also exist graphs that combine characteristics
from multiple types discussed above. For example, a
graph can be both directed and weighted (Fig. 4).

Fig. 4: Directed Weighted Graph
source: https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf

3) Subgraph
A subgraph is a graph formed from a subset of the
vertices and edges of a larger graph. Formally, given
a graph G = (V,E), a graph G1 = (V1,E1) is called a
subgraph of G if V1 ⊆V and E1 ⊆ E.

B. Osu!

Osu! is a free-to-play rhythm game in which players
interact with visual hit objects that appear in synchroniza-
tion with background music. Although the game includes
multiple gameplay modes, such as osu!taiko, osu!catch, and
osu!mania, this paper focuses exclusively on osu!standard,
the default and most widely played mode. In osu!standard,
players are required to click, slide, or spin hit objects at the
correct time and in the correct sequence, based on both visual
cues and musical rhythm.

Each beatmap in osu!standard represents a sequence of
hit objects, which includes hit circles, sliders, and spinners.
These objects are placed at specific coordinates on a 2D
playfield and are accompanied by precise timing ring. The

goal of the game is to interact with these objects as accurately
as possible, in accordance with the music’s tempo and struc-
ture. This makes the game both mechanically demanding
and cognitively engaging, as it emphasizes timing precision,
spatial awareness, and fast decision-making.

Fig. 5: osu! homescreen
source: Author’s archive

Gameplay basics of osu!:
a) Playfield

Fig. 6: Playfield
source: https://osu.ppy.sh/wiki/en/Game_mode/osu!

b) Hit Circles
Hit Circles are simple objects that require the player
to click on them precisely when a shrinking approach
ring aligns with their border. They represent single-tap
actions and are the most basic form of interaction.

Fig. 7: Hit Circles
source: https://osu.ppy.sh/wiki/en/Game_mode/osu!

c) Sliders
Sliders consist of a start circle connected to a path that

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osu.ppy.sh/wiki/en/Game_mode/osu!
https://osu.ppy.sh/wiki/en/Game_mode/osu!


the player must follow by holding the cursor along its
trajectory until the end. Sliders often require players to
track curved or zigzagging movements in rhythm with
the music.

Fig. 8: Sliders
source: https://osu.ppy.sh/wiki/en/Game_mode/osu!

d) Spinners
Spinners require the player to rapidly spin their cursor
around a central point for a set duration.

Fig. 9: Spinners
source: https://osu.ppy.sh/wiki/en/Game_mode/osu!

Osu! assigns each beatmap a star rating to indicate its
overall difficulty, this value is the result of a complex
simulation and is not directly interpretable by players. Osu!
exposes several individual difficulty parameters, including:

• Approach Rate (AR): Determines how early hit objects
appear before they must be interacted with.

• Overall Difficulty (OD): Controls the timing precision
required to achieve higher accuracy scores.

• Circle Size (CS): Affects the size of hit objects, making
them easier or harder to aim at.

• HP Drain Rate (HP): Influences how quickly a player’s
health depletes from misses and how much it regener-
ates from successful hits.

These values are shown explicitly to players and contribute
significantly to how a beatmap “feels” while playing.

C. Beatmap Format and Object Properties

1) .osu File
.osu file is a human-readable file format containing
information about a beatmap. Each .osu file is divided

into several sections as follows, each sections indicated
by section titles in square brackets.

TABLE I: .osu file structure [3]

Section Description
[General] General information about the beatmap
[Editor] Saved settings for the beatmap editor
[Metadata] Information used to indetify the beatmap
[Difficulty] Difficulty settings
[Events] Beatmap and storyboard graphic events
[TimingPoints] Timing and control points
[Colours] Combo and skin colours
[HitObjects] Hit objects

This paper focuses specifically on the [HitObjects]
section because it defines the individual interactive
elements that appear during gameplay. By extracting
and use the data from this section, it is possible to model
the beatmap as a directed weighted graph. The struc-
ture of each line in the [HitObjects] sections fol-
lows a syntax: x, y, time, type, hitSound,
objectParams, hitSample [3]
where:
• x (integer) and y (integer): Position in osu! pixels of

the object.
• time (integer): Time when the object is to be hit,

in milliseconds from the beginning of the beatmap’s
audio.

• type (integer): Bit flags indicating the type of the
object.

• hitSound (integer): Bit flags indicating the hit-
sound applied to the object. See the hitsound section.

• objectParams (Comma-separated list): Extra pa-
rameters specific to the object’s type.

• hitSample (Colon-separated list): Information
about which samples are played when the object is
hit. It is closely related to hitSound. If it is not
written, it defaults to 0:0:0:0:.

2) Temporal and Spatial Properties of Hit Objects
Each hit object in osu! beatmaps has both temporal
and spatial characteristics, which define its gameplay
challenge. Temporal properties is where each object has
a time where it indicates when the object is to be hit.
Spatial properties is where objects are mapped onto a
512x384 pixels playfield with specific (x,y) coordinates.
These properties are parsed directly from the .osu
file’s [HitObjects] section. Together, they form the
basis for modeling beatmaps as graphs.

III. METHOD

A. Limitations
The author decided to make a limit on the scope of

this experiment to ensure a more focused and manageable
analysis. The following boundaries are made:

• Game Mode: This paper only focuses on osu!standard
game mode.

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

https://osu.ppy.sh/wiki/en/Game_mode/osu!
https://osu.ppy.sh/wiki/en/Game_mode/osu!


• Beatmap Section: The analysis is limited to the
[HitObjects] section of the .osu file. Other sec-
tions are not included in the modeling.

• Hit Object Types: Among the hit objects, only Hit Cir-
cles and Sliders are considered. Spinners are excluded
because they do not involve spatial movement between
objects.

• Game Modifier: Modifications to beatmaps, such as
Hard Rock, Double Time, Hidden, and Easy are ex-
cluded. Beatmaps are analyzed in their No Mode state.

• Difficulty Parameters: Approach Rate (AR), Overall
Difficulty (OD), and Circle Size (CS) are not con-
tributed into the graph weighting formula.

• Player Behaviour: Player’s skill level, cursor move-
ments, or reaction times are not considered. The focus
is on the structural properties of the beatmap rather than
player’s individual skill.

B. Parsing osu! Beatmaps

The first step to model an osu! beatmap is to parse its
.osu file to get four main information (x, y, time, and
type) from the [HitObjects] section. The code shown
in Fig. 10 parses the [HitObjects] section and extract
important values that will be use to calculate edge weight.
These values are stored as dictionaries in a list, which serves
as the input for the graph construction. The parser ignores
irrelevant sections and the spinners object types.

Fig. 10: Parser function
source: Author’s archive

C. Building the Graph

After parsing the valuable information from the beatmap,
we can now build the graph where each node represents a
hit object and each edge represents the transition to the next
node. The edges are assigned with weights based on a custom
difficulty formula. This implementation uses Python along
with the networkx library to represent the beatmap graph
and matplotlib library to visualize the resulting structure.

The code shown in Fig. 11 demonstrates how the graph
is built using the previously parsed hit objects using
networkx library. Each hit object is added as a node with
its attribute, such as position, time, and hit object type.
Directed edges are then created between consecutive nodes.

The code shown in Fig. 12 visualizes the constructed
graph using the matplotlib library. Nodes are positioned
based on their in-game position. Different colors are used to
distinguish between object types (blue for circles, green for
sliders). Note that the nodes in the graph are 0-index.

Fig. 11: Build graph function
source: Author’s archive

Fig. 12: Graph visualization function
source: Author’s archive

D. Custom Edge Weight Formula

The author used a custom formula to calculate each edge
weight. The weight is influenced by two main factors:

• Spatial Distance: It’s the Euclidean distance between
two nodes. Larger distances indicate harder transition.

• Temporal Interval: The time difference between two
nodes. Smaller intervals require quicker reactions, in-
creasing difficulty.

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025



In addition, the author also consider two special sequences
in a beatmap, a burst and a stream. Burst is where many
nodes are in the exact same position, only difference is in
time interval. These are often part of rapid sequences that are
mechanically demanding, even if the player’s cursor doesn’t
need to move. Burst difficulty is addressed by assigning a
bonus to consecutive objects at the same position. Stream is
a pattern of multiple hit circles placed in rapid succession,
often at a consistent distance and timing interval and they
significantly increase the difficulty of the beatmap. The au-
thor’s custom formula for edge weight w of two consecutive
nodes is defined as:

w =


B
∆t

· γ ·α, if d = 0 (burst bonus)
d
∆t

· γ ·α, otherwise
(1)

where:
• d is the Euclidean distance between two nodes.
• ∆t is the time difference between two nodes.
• B is a fixed burst bonus value (the author used 100 for

experiment).
• γ is a scale factor (the author uses 5 for experiment).
• α is a stream factor.

The code shown in Fig. 13 implements the custom edge
weight formula used to estimate the difficulty between two
consecutive nodes. When two nodes appear in the exact
same position within a short time frame, the function applies
a burst bonus to increase the edge weight. The result is
then multiplied by stream factor, if the temporal interval is
less than 100 milliseconds and the spatial distance between
current edge and the previous edge is less than 1.5, stream
is detected and the stream factor is set to be 6, otherwise it
follows the default value, which is 1. This adjustment ensures
that high-speed sequences are not underrated.

Fig. 13: Custom weight formula function
source: Author’s archive

E. Difficulty Estimation and Execution

The final step is to run the program using a driver that
executes the difficulty estimation process (Fig. 14). The
driver program begins by parsing the beatmap file, build a

directed graph, assigning edge weights, and visualizing the
resulting graph structure.

Once the graph is built, the program proceeds to estimate
the difficulty of the beatmap by calculating the average edge
weight across the entire graph. This average weight reflects
overall gameplay intensity and difficulty.

The author chooses to classify beatmaps into intuitive
difficulty estimation based on the average weight of the
graph. These ranges are as follows:

• Easy (< 3): Represents beatmaps with slow tempo or
widely spaced objects.

• Challenging (3−5): Represents beatmaps with moder-
ate tight timing or spatial transitions.

• Medium-Well (5−6.5): Represents beatmaps with more
tight timing or spatial transitions with consistent bursts
or directional changes.

• Hard (> 6.5): Represents beatmaps with high-density
patterns, such as jumps, bursts, and streams.

Although informal, these classification gives players a quick,
interpretable estimate of a beatmap’s overall intensity and
difficulty.

Fig. 14: Driver program
source: Author’s archive

The full implementation code used in this experiment can be
reviewed in the appendix.

IV. EXPERIMENT

The author chooses a beatmap sets titled “TRUE - Sound-
scape (SkyFlame)” from the osu! beatmaps repository [5].
This set contains eight distinct difficulty levels, providing a
wide range of gameplay complexity. For the purpose of this
experiment, the author selects three out of eight maps, which
are the “[Easy]”, “[Kowari’s Expert]”, and “[Melody]”.
This selection allows the graph-based difficulty estimation
method to be evaluated across varying beatmap difficulties.

1) TRUE - Soundscape (SkyFlame) [Easy]
According to the beatmap set, this beatmap has an offi-
cial star rating at 2.06. Its complete graph representation
is shown in Fig. 15. As printed in the terminal output
(Fig. 16), the graph contains 428 nodes and 427 edges.
A few sample edges and their computed weights are
also printed. This graph’s average edge weight is 1.35.

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025



Based on the classification the author has defined, this
beatmap is categorized as “Easy” in difficulty, indicating
a relatively low gameplay difficulty.

Fig. 15: [Easy]’s full graph
source: Author’s archive

Fig. 16: [Easy]’s terminal output
source: Author’s archive

2) TRUE - Soundscape (SkyFlame) [Kowari’s Expert]
According to the beatmap set, this beatmap has an
official star rating at 5.85. Its complete graph repre-
sentation is shown in Fig. 17. A subgraph is shown in
Fig. 18 to provide a clearer view of individual nodes,
edges, and their corresponding weights. As printed in
the terminal output (Fig. 19), this beatmaps has 1311
nodes, 1310 edges, and the average weight is 6.32.
Based on the classification the author has defined, this
beatmap is categorized as “Medium-Well” in difficulty,
indicating more spatial transitions with consistent bursts
or directional changes. This beatmap is harder than the
previous one (TRUE - Soundscape (SkyFlame) [Easy]).

Fig. 17: [Kowari’s Expert]’s full graph
source: Author’s archive

Fig. 18: [Kowari’s Expert]’s subgraph
source: Author’s archive

Fig. 19: [Kowari’s Expert]’s terminal output
source: Author’s archive

3) TRUE - Soundscape (SkyFlame) [Melody]
According to the beatmap set, this beatmap has an offi-
cial star rating at 6.8. Its complete graph representation
is shown in Fig. 20. As printed in the terminal output
(Fig. 21), the graph contains 1346 nodes and 1345
edges. This graph’s average weight is 7.12, which based
on the classification the author has defined, this beatmap
is categorized as “Hard” in difficulty, indicating high-
density patterns. This beatmap is also the hardest of the
beatmap set according to the osu! beatmap repository.

Fig. 20: [Melody]’s full graph
source: Author’s archive

Fig. 21: [Melody]’s output terminal
source: Author’s archive

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025



V. CONCLUSION

In this paper, we successfully modeled osu! beatmaps
into graph to estimate its gameplay difficulty in a more
interpretable and structured way. By parsing .osu files, the
sequences of hit objects can be represented as a directed
graph, where each node represents a hit object and each
edge represents the transition between them. A custom edge
weight formula was also defined to assign weight to each
edge by taking into account of spatial distance, time interval,
and specific gameplay patterns, such as bursts and streams.

Through this graph-based modeling, the average edge
weight of all the existing edges was used as an estimation
for gameplay difficulty, and an intuitive classification sys-
tem was defined to label beatmaps as Easy, Challenging,
Medium-Well, or Hard. After experimenting with several
selected beatmaps, results show that the method used was
quite aligned with the osu!’s official star rating system,
indicating that this approach captures meaningful difficulty
characteristics of the game.

However, while the graph-based model provides a struc-
tured approach to estimate a beatmap difficulty, there remains
room for improvement. The current method does not yet
account for more nuanced gameplay elements, such as cursor
movement complexity, sliders pattern, and game modifier.
These included aspects would allow for a more compre-
hensive and accurate estimation that better reflects the wide
variety of skillsets required in osu! gameplay.

VI. APPENDIX

- Source code: https://github.com/Valz0504/Modeling-
osu-beatmaps.git

- Video: https://youtu.be/JfTSoxNzPiU

VII. ACKNOWLEDGEMENT

The author would like to express sincere gratitude to Dr.
Ir. Rinaldi, M.T. and Mr. Arrival Dwi Sentosa, S.Kom., M.T.,
lecturers of the IF1220 Discrete Mathematics course, for
their guidance, encouragement, and support throughout the
semester. Thanks to their support, the author was able to
gain valuable insights and learn many new things throughout
the course. The author is also deeply thankful to family and
friends who have been keep motivating and supporting.

REFERENCES

[1] R. Munir, "Graf (Bagian 1)", [Online]. Available: https:
//informatika.stei.itb.ac.id/~rinaldi.munir/
Matdis/2024-2025/20-Graf-Bagian1-2024.pdf.
[Accessed: 17-Jun-2025].

[2] ppy, “osu!standard,” osu! wiki, [Online]. Available: https://osu.
ppy.sh/wiki/en/Game_mode/osu!. [Accessed: 17-Jun-2025].

[3] ppy, “.osu (file format),” osu! wiki, [Online]. Available:
https://osu.ppy.sh/wiki/en/Client/File_formats/
osu_(file_format). [Accessed: 17-Jun-2025].

[4] GeeksforGeeks, “Introduction to Graphs in Python,” [Online].
Available: https://www.geeksforgeeks.org/python/
introduction-to-graphs-in-python/. [Accessed: 18-Jun-
2025].

[5] osu!, “osu! Beatmap Listing,” [Online]. Available: https://osu.
ppy.sh/beatmapsets. [Accessed: 18-Jun-2025].

STATEMENT

Hereby, I declare that this paper I have written is my own
work, not a reproduction or translation of someone else’s
paper, and not plagiarized.

Bandung, 19 January 2025

Emilio Justin (13524043)

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

https://github.com/Valz0504/Modeling-osu-beatmaps.git
https://github.com/Valz0504/Modeling-osu-beatmaps.git
https://youtu.be/JfTSoxNzPiU
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://osu.ppy.sh/wiki/en/Game_mode/osu!
https://osu.ppy.sh/wiki/en/Game_mode/osu!
https://osu.ppy.sh/wiki/en/Client/File_formats/osu_(file_format)
https://osu.ppy.sh/wiki/en/Client/File_formats/osu_(file_format)
https://www.geeksforgeeks.org/python/introduction-to-graphs-in-python/
https://www.geeksforgeeks.org/python/introduction-to-graphs-in-python/
https://osu.ppy.sh/beatmapsets
https://osu.ppy.sh/beatmapsets

	Introduction
	Theoretical Framework
	Graph
	Osu!
	Beatmap Format and Object Properties

	Method
	Limitations
	Parsing osu! Beatmaps
	Building the Graph
	Custom Edge Weight Formula
	Difficulty Estimation and Execution

	Experiment
	Conclusion
	Appendix
	Acknowledgement
	References

